Date: \qquad
Volume
Effects of Changing Dimensions
1.) Surface Area=

2.) Surface A ra $=160 \mathrm{ft}^{2}$

$$
\text { Volume }=\frac{96 f+3}{12(8)}
$$

$$
12(12)=
$$

3.) How did the three dimensional shape change from \#1 to \#2?
the height doubled
a.) How did this change affect our surface area and volume?
volume is doUbled / surface Area Doubled
4.) Surface Area $=122 f t^{2}$

$$
\text { Volume }=84 \mathrm{ft}^{3}
$$

5.) Surface Area= \qquad

$$
\text { Volume }=12 \overline{26+3}
$$

6.) How did the three dimensional shape change from \#4 to \#5?

The height of the base is 2more in \#S
a.) How did this change affect our surface area and volume?

Surface Area increased by 40, volume increased by 42.
7.) Surface Area= \qquad Volume $=103680$ in 3

8.) Surface Area= \qquad 1504in2

$$
\text { Volume= } 3840 \mathrm{in}^{2}
$$

a.) How did this change affect our surface area and volume?
volume was multiplied by 27.
Surface Area was multiplied by $1 / 8$.
Directions: Show all work. (Suggestion: Draw diagrams!)
10.) How would the volume of a rectangular solid change if the length, width, and height are doubled?

$$
\begin{aligned}
& V=(2 x)(2 y)(z z) \\
& V=6(x y z)
\end{aligned}
$$

The volume would be multiplied by 6 .
11.) If the length and width of a rectangular solid are unchanged but the height is doubled, how does the volume change? From question \#1z\#2, the volume doubles.
12.) A side of a cube measures 8 centimeters and a side of a smaller cube measures 4 centimeters. The volume of the larger cube is how many times the volume of the smaller cube?

$$
V=s^{3}
$$

$$
\begin{aligned}
& V=8^{3} \quad V=4^{3} \\
& V=512 \mathrm{~cm}^{3} \quad V=64 \mathrm{~cm}^{3}
\end{aligned}
$$

