Name: \qquad

Ch. 7 Review

Topics that will be covered on the test:
-Graphs of sine, cosine, and tangent functions.

- Know how to graph them on a blank coordinate grid.
- Know how to find the amplitude, period, and range of the function.
- Be able to restrict the graph to specific intervals.
- Know the values that will lie on your x-axis when graphing.
- Show defining features in the graph.
-Even and odd functions
-Determine the Domain and Range of a function.
-Cosecant, Secant, and cotangent Graphs
- Know the domain and range of a cosecant, secant, and cotangent graph.
- Know that these graphs should look like.
- Know how these graphs relate to sine, cosine, and tangent.
- Know how to find the asymptotes that result.
-Transformations for all the trigonometric functions
- Be able to recognize transformations in a function.
- Be able to make a function, given a few transformations.
- Be able to look at a graph, and state the function.
- Be able to create an accurate graph, given a function.

1. Graph $h(t)=$ tart on the interval $[\pi, 2 \pi]$.

$$
\tan t=\frac{\sin t}{\cos t \Rightarrow 0}
$$

2. What is the minimum value of $g(t)=\sin t$?

$$
\begin{aligned}
& \text { Range: }[-1,1] \\
& \quad \text { minimum }=-1
\end{aligned}
$$

3. For what values of t on the interval $[-3 \pi,-\pi]$ is $g(t)=$ cost decreasing?
cost is decreasing when cost moves from positive to negative.
fort quad $(t) \rightarrow$ second quad $(-)$
$-2 \pi \leq t \leq-\pi \leftharpoonup$ This is the only
 interval between

$$
[-3 \pi,-\pi]
$$

a.) For what values of t on the interval $[-2 \pi, 2 \pi]$ is $\tan t$ less than 0 ?
tank is leSS than 0 when tank is
tank is negative in
and s' lith quad

Describe the transformations that change the original inverse trigonometric or trigonometric graphs. Provide the period and amplitude as well.
4. $g(t)=\sec (-t)-8$
\rightarrow Reflection over The y-axis
\rightarrow down 8
Period: $\frac{2 \pi}{1}=2 \pi$
Amplitude: I

$$
\begin{aligned}
& \text { negative. } \\
& \rightarrow \tan t=\frac{\sin t}{\cos t} \\
& \frac{\pi}{2}<t<\pi, \frac{3 \pi}{2}<t<2 \pi \\
& -\frac{3 \pi}{2}<t<-\pi,-\frac{\pi}{2}<t<0
\end{aligned}
$$

5. $f(t)=4 \cos t+5$
\rightarrow Vertical stretch by 4

$$
\rightarrow \cup p S
$$

6. $h(t)=5 \cos (t-3)$
\rightarrow phase shift: Right 3 -Period: 2π
\rightarrow vertical stretch by 5 -Amplitude:5
7. $g(t)=2 \cos (3 t-4)-1$
\rightarrow horizontal compression $1 / 3$
\rightarrow horizontal shifteright $4 / 3$
\rightarrow vertical stretch by z
\rightarrow down 1
Period: $\frac{2 \pi}{3}$ Amplitude: 2
8. Identify the amplitude, period, vertical shift, and phase shift of $h(t)=-2 \sin \left(\frac{t}{3}+4\right)+1$. Then graph this function from
$[-3 \pi, 3 \pi]$.
AMP: 2 period:

$$
\frac{2 \pi}{1 / 3}=6 \pi_{-9 / 2}
$$

\rightarrow horizontal shift: left 12
\rightarrow vertical stretch by 2
\rightarrow Reflection Over the X-axis
\rightarrow up I
\rightarrow using Your Graphing Calculator!
9. Find a sine function whose graph looks like the graph of:
$f(t)=3 \sin (2 t-1)+4 \cos (2 t+3)$.
After graphed on a graphing calculator:
Amplitude ~ 2.61 phase shift $\div 29$.
Period: $\frac{2 \pi}{2}=\pi \quad b=2$

$$
\begin{gathered}
g(t) \approx 2.61 \sin (2(t-.29)) \text {) either } \\
g(t) \approx 2.61 \sin (2 t-.58) \quad \text { accepted! }
\end{gathered}
$$

10. Find a sine function whose graph looks like the graph of:
$f(t)=6 \sin (4 t+7)-5 \cos (4 t+8)$
After graphed on calc: left
Amplitude 10.56 Phase shift 2.1145
Period $\frac{2 \pi}{4}=\frac{\pi}{2}$

$$
\begin{aligned}
& g(t) \approx 10.56 \sin (4(t+.114 s)) \\
& g(t) \approx 10.56 \sin (4 t+.488)
\end{aligned}
$$

$$
\begin{array}{ll}
\frac{5 \pi}{3}=\frac{2 \pi}{6} \\
b=2 \pi \cdot \frac{3}{3}, 0,0,1 \\
5 \pi^{2} \\
b=6 \sin (6 / 5 t)-1 & b=6 \pi \\
g(t)=2 / 3 \sin \left(2 / 3\left(t+\frac{2 \pi}{3}\right)\right)-2 & b=2 / 3 \\
g(t)=2 / 3 \sin \left(2 / 3 t+\frac{4 \pi}{9}\right)-2 &
\end{array}
$$

$t=\frac{5 \pi}{6}+n \pi$ where ais any integer
$\operatorname{tant}=\frac{\sin t}{\cos t} \leftarrow$ where does this equal $\frac{\sqrt{3}}{3}$ either and OR LiTh quad.
$\frac{5 \pi}{6}=\frac{11 \pi}{6}$ within 1 cycle of unit circle!
13. Find all the exact t-values for which $\sin t=\frac{\sqrt{2}}{2}$.

Tint is positive in the list z^{1} and quadrant.
$\frac{\pi}{4}$ will produce $\frac{\sqrt{2}}{2}$ $\frac{3 \pi}{4}$ フ

$$
\frac{\pi}{4}+2 \pi n \text { where } \begin{aligned}
& \text { whin integer }
\end{aligned}
$$

OR $\frac{3 \pi}{4}+2 \pi n$ where is an integer.
14. Graph $g(t)=2 \sin \left(\frac{2 t}{3}-\frac{\pi}{9}\right)$ over the interval $[-2 \pi, 2 \pi]$.
\rightarrow horizontal Stretch by $3 / 2$
\rightarrow horizontal shift : right
\rightarrow Vertical Shift by 2
\longrightarrow Graph w/ calculator!

