

Congratulations! You have just derived the double angle identities ©

There are 2 other ways that cos(2x) can be written. Give the two other forms of cos(2x). *Hint: Use your Pythagorean identities.*

 $\cos(2x) = 2\cos^2 x - 1$ $(0S^{2}X - (1 - (0S^{2}X)))$ $(OS^2 X - 1 + COS^2 X)$ 21052X-1

 $\cos(2x) = -\Im \sin^2 X$ $(1-\sin^2 x)-\sin^2 x$ $1-2\sin^2 x$

Take these two double angle identities above and solve the correct equation for $\sin^2 x$ and the correct equation for $\cos^2 x$.

The two equations you just found are the Power Reducing Identities

Now we are going to use the power reducing identities to find the *half angle identities*

Start by rewriting your power reducing identities.

$$\sin^2 x = \frac{1 - \cos^2 x}{2}$$
 $\cos^2 x = \frac{\cos^2 x}{2}$

If we are looking for half angle identities, we need to replace the angle we have with **half** the angle. Do that and then solve each one (you should end up with two equations, one that says $\sin x =$ and one that says $\cos x =$)

$$\sin \frac{x}{2} = \int -\cos \frac{2x}{2} = \int -\cos \frac{x}{2} = \int -\cos \frac{x}{2} = \cos \frac{x}{2} = \cos \frac{2x}{2} - 1$$

$$\sin \frac{x}{2} = \pm \int 1 -\cos \frac{2x}{2} = \int \cos \frac{2x}{2} - 1$$

$$\sin \frac{x}{2} = \pm \int 1 -\cos \frac{x}{2} = \cos \frac{2x}{2} - 1$$

Now that you know sin $\frac{x}{2}$ and $\cos \frac{x}{2}$, find the identity for $\tan \frac{x}{2}$

$$\tan \frac{x}{2} = \frac{\sin x}{\cos \frac{x}{2}} = \pm \int 1 -\cos x = \pm \int 1 -\cos x + \frac{x}{2} = \frac{1 -\cos x}{\cos \frac{x}{2}} = \pm \int 1 -\cos x + \frac{x}{2} = \frac{1 -\cos x}{\cos \frac{x}{2}} = \pm \int 1 -\cos x + \frac{x}{2} = \frac{1 -\cos x}{\cos \frac{x}{2}} = \frac$$

Practice with these identities:

Directions: Use the half angle identities to evaluate the given expression exactly.

1.
$$\cos \frac{\pi}{8}$$
 $\overrightarrow{\mathbf{T}}_{\mathbf{T}} = \overrightarrow{\mathbf{T}}_{\mathbf{T}}$ 2. $\sin \frac{5\pi}{8}$ $\lambda = \overbrace{\mathbf{T}}_{\mathbf{T}}$ 3. $\cot \frac{\pi}{8} = \frac{1}{4}$ $\overrightarrow{\mathbf{T}}_{\mathbf{T}}$ $\overrightarrow{\mathbf{T}}_{\mathbf{T}}$ $\overrightarrow{\mathbf{T}}_{\mathbf{T}}$
 $= \pm \int 1 \pm \cos \frac{\pi}{4}$ $\operatorname{Sin} \operatorname{Sin} = \pm \int 1 - (\cos \operatorname{Sin} = \operatorname{Sin$

Directions: Find
$$\sin \frac{x}{2}$$
, $\cos \frac{x}{2}$, and $\tan \frac{x}{2}$ under the given conditions.
1. sinx = .6 for $\frac{\pi}{2} < x < \pi$ and grad
 $= 6 = \frac{6}{10}$
 $= \frac{6}{10}$
 $= \frac{1}{2}$
 $= \frac{1}{$

l

<u>Directions</u>: Assume sinx = .6 for $0 < x < \frac{\pi}{2}$, and evaluate the given expression.

 $\frac{10.\cos \frac{x}{2}}{\frac{8}{2}} = \pm \int \frac{10.\cos \frac{x}{2}} = \pm \int \frac{10.\cos \frac{x}{2}}{\frac{8}{2}} = \pm \int \frac{10.\cos$ 9. sin4xSin(2x+ 2x) 10 18/10 2(18/25)(1/25) =

$$COS_{2}X = (\frac{8}{10})^{2} - (\frac{6}{10})^{2}$$
$$= \frac{64}{100} - \frac{34}{100} = \frac{28}{100} = \frac{7}{25}$$
$$= \frac{252}{1025} \times .4032$$

Directions: Simplify the given expression.

11. $\frac{\sin 2x}{2\sin x}$ 12. $2\cos 2y\sin 2y$ 13. $(\sin 2x) = 2\cos 2y\sin 2y$ $\sin (2x+2x) = 2\cos 2y\sin 2y$ $\sin (4x)$

13.
$$(sinx + cosx)^2 - sin2x$$

 $Sin^2x + Sinx(oS) + (0Sx 5mx)$
 $| + 2Sinx(oSx - Sin2) \times (0Sx -$