Pre-Calculus
9-3 Other Identities

simplify (hint: you have some identities that can help you) Relates to sum ald difference

$$
\begin{aligned}
\sin (x+x)= & \sin x \cdot \cos x+\cos x \sin x \\
= & 2 \sin x \cos x \\
\cos (x+x)= & \cos x \cdot \cos x-\sin x \cdot \sin x \\
= & \cos ^{2} x-\sin ^{2} x \\
\tan (x+x) \rightarrow & \operatorname{use} \operatorname{orig} \operatorname{inal} I \operatorname{den} \pi+y \\
& \frac{\tan x+\tan x}{1-\tan x \tan x}=\frac{2 \tan x}{1-\tan ^{2} x}
\end{aligned}
$$

Congratulations! You have just derived the double angle identities ©)
There are 2 other ways that $\cos (2 x)$ can be written. Give the two other forms of $\cos (2 x)$.
Hint: Use your Pythagorean identities.

$$
\begin{array}{cc}
\cos (2 x x)=2 \cos ^{2} x-1 & \cos (2 x)=1-2 \sin ^{2} x \\
\cos ^{2} x-\left(1-\cos ^{2} x\right) & \left(1-\sin ^{2} x\right)-\sin ^{2} x \\
\cos ^{2} x-1+\cos ^{2} x & 1-2 \sin ^{2} x \\
2 \cos ^{2} x-1 &
\end{array}
$$

Take these two double angle identities above and solve the correct equation for $\sin ^{2} \mathrm{x}$ and the correct equation for $\cos ^{2} x$.

$$
\begin{gathered}
\sin ^{2} x=\frac{\frac{1-\cos 2 x}{2}}{-\frac{\sin ^{2} x}{-}=\frac{\cos 2 x-1}{-2}} \\
\sin ^{2} x=\frac{1-\cos 2 x}{2}
\end{gathered}
$$

Start by rewriting your power reducing identities.

$$
\sin ^{2} x=\frac{1-\cos 2 x}{2} \cos ^{2} x=\frac{\cos 2 x+1}{2}
$$

If we are looking for half angle identities, we need to replace the angle we have with half the angle. Do that and then solve each one (you should end up with two equations, one that says $\sin x=$ and one that says $\cos x=$)

Practice with these identities:
Directions: Use the half angle identities to evaluate the given expression exactly.

1. $\cos \frac{\pi}{8} \frac{\pi}{\frac{\pi}{2}}=\frac{\pi}{4}$

$$
\text { 2. } \sin \frac{5 \pi}{8} \quad X=\frac{5 \pi}{4}
$$

$$
3 \cdot \cot \frac{\pi}{8}=\frac{1}{\tan \frac{\pi}{8}}
$$

$$
x=\frac{\pi}{4}
$$

$$
= \pm \sqrt{\frac{1+\cos \frac{\pi}{4}}{2}}
$$

$$
\sin \frac{s \pi}{8}= \pm \sqrt{\frac{1-\cos \frac{5 \pi}{4}}{2}}
$$

$$
\begin{aligned}
& = \pm \sqrt{\frac{1+\sqrt{2}}{2}} \\
& = \pm \sqrt{\frac{2+\sqrt{2}}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& = \pm \sqrt{\frac{2}{\frac{1+\left(+\frac{\sqrt{2}}{2}\right)}{2}}} \\
& = \pm \sqrt{\frac{2+\sqrt{2}}{2}}=\frac{\sqrt{2+\sqrt{2}}}{2} \\
& \text { the given conditions. } \\
& =\frac{\sqrt{4}}{4}
\end{aligned}
$$

$$
\begin{aligned}
=\frac{\sqrt{4}}{2+\sqrt{2}} & =\frac{\sqrt{2}}{2-\sqrt{2}} \cdot \frac{2+\sqrt{2}}{2+\sqrt{2}} \\
& =\frac{2 \sqrt{2}+2}{4-2=2}=\sqrt{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Now that you know } \sin \frac{x}{2} \text { and } \cos \frac{x}{2} \text {, find the identity for } \tan \frac{x}{2} \\
& \tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{x}{2}}= \pm \sqrt{1-\cos x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 4. } \sin x=-\frac{4}{5} \operatorname{for} \pi<x<\frac{3 \pi}{2} \\
& \sin 2 x=2 \sin x \cos x \\
&=2(-4 / 5)(-3 / 5) \\
&=24 / 5 \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
&=(-3 / 5)^{2}-(-4 / 5)^{2} \\
&=9 / 25-16 / 25=-7 / 25
\end{aligned}
$$

$$
(-4)^{2}+x^{2}=5^{2}
$$

$$
\begin{gathered}
2+x^{2}=5 \\
x^{2}=25+16=9 \\
x=3 \rightarrow 3
\end{gathered}
$$

$$
\begin{aligned}
& 2 s+6=9 \\
& X=3 \rightarrow 3 \text { rd quad } \\
& x=24 k
\end{aligned}
$$

$$
\tan 2 x=\frac{24 / 5}{-7 / 25}=-24 / 7
$$

$$
\begin{aligned}
\cos 2 x & =(-1 / 5)^{2}-\left(-\frac{2 \sqrt{6}}{}\right)^{2} \\
& \left.=1 / 25-\frac{4 \cdot 6}{25}=\frac{1-24}{25}=\frac{-23}{25}\right) \\
\sin 2 x & =2\left(-\frac{2 \sqrt{6}}{5}\right)(-1 / 5)=\frac{4 \sqrt{6}}{25} \\
\tan 2 x & =\frac{2(2 \sqrt{6})}{1-(2 \sqrt{6})^{2}}=\frac{4 \sqrt{6}}{1-4.6}=\frac{4 \sqrt{6}}{23}
\end{aligned}
$$

$$
\begin{aligned}
\cos 2 x & =\cos ^{2} x-\sin ^{2} x \\
\cos 2 x & =(-4 / 5)^{2}-(3 / 5)^{2} \\
& =\frac{16}{25}-\frac{9}{25}=\frac{7}{25} \\
\sin 2 x & =2(-4 / 5)(-3 / 5) \\
& =24 / 5 \\
\tan 2 x & =\frac{2(3 / 4)}{1-(3 / 4)^{2}}=\frac{6 / 4}{1-9 / 16} \\
& =\frac{3 / 2}{7 / 16}\left(\frac{24}{7}\right)
\end{aligned}
$$

Directions: Find $\sin \frac{x}{2}, \cos \frac{x}{2}$, and $\tan \frac{x}{2}$ under the given conditions.
7. $\sin x=.6$ for $\frac{\pi}{2}<x<\pi$ and quad
$-6=6 \quad 8 . \tan x=\frac{1}{2}$ for $\pi<x<\frac{3 \pi}{2}$

$$
.6=\frac{6}{10}
$$

$$
\begin{aligned}
& 6^{2}+x^{2}=10^{2} \\
& x^{2}=100-2
\end{aligned}
$$

$x^{2}-100-36$
$\sin \frac{x}{2}= \pm \sqrt{\frac{1-8 / 10}{2}}$
$= \pm \sqrt{\frac{1}{10}} \quad \begin{aligned} & x=8 \\ & = \pm \frac{1}{\sqrt{10}}=\end{aligned}+\frac{-\frac{1}{10}}{10}$

$$
\text { in and quad so }(t)
$$

$$
\begin{aligned}
\cos \frac{x}{2} & = \pm \sqrt{\frac{1+8 / 10}{2}} \\
& = \pm \sqrt{9 / 10}= \pm \frac{3}{\sqrt{10}}=\frac{ \pm 3 \sqrt{10}}{10}
\end{aligned}
$$

$$
\begin{aligned}
\sin \frac{x}{2} & \pm \sqrt{\frac{1-\frac{-2}{\sqrt{5}}}{2}} \\
& = \pm \sqrt{\frac{\sqrt{5}+2}{2 \sqrt{5}}} \\
\cos \frac{x}{2} & = \pm \sqrt{\frac{1+-2 / \sqrt{5}}{2}} \\
& = \pm \sqrt{\frac{\sqrt{5}-2}{2}} \\
\tan \frac{x}{2} & =\frac{-1}{\sqrt{5}}=\frac{-1}{1+\frac{-2}{\sqrt{5}}} \cdot \frac{\sqrt{5}-2}{\sqrt{5}} \\
& =\frac{-1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \\
& =\frac{-15 \sqrt{5}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2} \\
& =\frac{-\sqrt{5}-2}{5-4}=-\sqrt{5}-2
\end{aligned}
$$

$$
\tan \frac{x}{2}=\frac{1-8 / 10}{6 / 10}=\frac{1 / 3}{6 / 10}=1 / 3 \quad \tan \frac{x}{2}=\frac{\frac{-1}{\sqrt{5}}}{1+\frac{-2}{\sqrt{5}}}=\frac{\frac{-1}{\sqrt{5}}}{\frac{\sqrt{5}-2}{\sqrt{5}}}
$$

Directions: Assume $\sin x=.6$ for $0<x<\frac{\pi}{2}$, and evaluate the given expression.

$$
\begin{aligned}
& \text { 9. } \sin 4 x \\
& \sin (2 x+2 x)= \\
& 2 \sin (2 x) \cos (2 x) \\
& \begin{aligned}
2(18 / 25)(7 / 25)=\frac{252}{625} \sin 2 x & =2\left(\frac{6}{10}\right)\left(\frac{6}{10}\right) \\
& =72 . \frac{18}{25}
\end{aligned} \\
& =\frac{72}{100}=\frac{18}{25} \\
& \text { 10. } \cos \frac{x}{2}= \pm \sqrt{\frac{1+8 / 10}{2}} \\
& = \pm \sqrt{\frac{18 / 10}{2}} \cdot 9487 \\
& = \pm \sqrt{\frac{18 / 10}{2}} \sqrt{9 / 10}=+3_{\sqrt{10}}{ }^{\text {quad }}
\end{aligned}
$$

$$
\begin{aligned}
\cos 2 x= & (8 / 10)^{2}-(6 / 10)^{2} \\
= & \frac{64}{100}-\frac{36}{100}=\frac{28}{100}=7 / 25 \\
& \frac{252}{625}=.4032 .
\end{aligned}
$$

Directions: Simplify the given expression.
11. $\frac{\sin 2 x}{2 \sin x}$

$$
\begin{aligned}
& \frac{2 \sin x \cos x}{2 \sin x} \\
& =\cos x
\end{aligned}
$$

12. $2 \cos 2 y \sin 2 y$

$$
\begin{aligned}
& \sin (2 x)=2 \cos y \sin y \\
& \sin (2 x)=2 \cos y \sin y \\
& \sin (2 x+2 x)=2 \cos 2 y \sin 2 y \\
& \sin (4 x)
\end{aligned}
$$

13. $(\sin x+\cos x)^{2}-\sin 2 x$

$$
\begin{gathered}
\frac{\sin ^{2} x}{1}+2 \sin x \cos x x+\cos ^{2} x-5 \sin 2 x-\sin 2 x \\
1+\sin 2 x-\sin 2 x \\
=1
\end{gathered}
$$

